BACKGROUND AND SIGNIFICANCE

- The marijuana industry is regulated by the 2018 USDA Farm Bill which defines hemp as cannabis containing less than 0.3% (dry weight) delta-9-tetrahydrocannabinol (Δ9-THC)
- New regulations increase analytical burdens by requiring the quantification of $\Delta 9$ -THC in complex matrices
- This is creating an unstainable testing environment for publicly funded laboratories
- New innovative solutions are needed to help meet new testing requirements because outsourcing of case work is costly
- Out of the box workflow solutions and well-validated methods enable labs to quickly implement and adopt new testing procedures to improve throughput, data quality and compliance
- This study validates an analytical test kit for high-throughput testing applications in plant, oil, and wax products using gas chromatography-flame ionization detection (GC-FID)
- QuantCaps[™] test kits *are injectable-ready matrix-matched reference materials* used in drug analysis applications on GC or LC platforms. QuantCaps[™] products are customized to the matrix, analytes, method, and platform of a laboratory's specific application
- QuantCaps[™] test kits allow laboratories to standardize their instrument calibration, validation, and methods for routine testing of drugs in complex matrices

GOAL

Validate the QuantCapsTM process for extracting and analyzing $\Delta 9$ -THC, $\Delta 8$ -THC and CBD in plant material, waxes and oil using the criteria set forth in ASB 036: Standard Practices for Method Validation in Forensic Toxicology in terms of accuracy, precision, calibration models, sensitivity, carryover, interferences, matrix effects and analyte stability

VALIDATION SUMMARY

METHOD PERFORMANCE CHARACTERISTICS										
Matrix	Analyte	Average % Bias	Average Between- Run % CV	Average Within- Run % CV	r²	Model	L.O.D (% by weight)	Carryover	Interference/ Specificity	Extract Stability (h)
OIL										
	CBD	-1.87	1.25	0.86	0.9998	Quadratic	0.10	No	Acceptable*	72
	Delta-8 THC	4.62	2.50	1.49	0.9997	Quadratic	0.10	No	Acceptable*	72
	Delta-9 THC	-7 68	1 83	1 30	0 9999	Quadratic	0 10	No	Accentable*	72
	ine	7.00	1.00	1.50	0.0000	Quuununu	0.10		Acceptable	, -
PLANT									Acceptable*	72
	CBD	-0.91	4.62	4.24	0.9998	Quadratic	0.10	No	Acceptable*	72
	Delta-8 THC	9.52	4.75	4.24	0.9998	Quadratic	0.10	No	Acceptable*	72
	Delta-9 THC	-5.97	4.18	3.71	0.9998	Quadratic	0.10	No	Acceptable*	72
WAX									Acceptable*	72
	CBD	-1.37	2.53	1.33	0.9999	Quadratic	0.10	No	Acceptable*	72
	Delta-8 THC	10.45	1.96	1.30	0.9999	Quadratic	0.10	No	Acceptable*	72
	Delta-9 THC	-6.23	2.28	1.44	0.9999	Quadratic	0.10	No	Acceptable*	72

Achieved chromatographic separation from CBC, CBDV, CBG, CBN, Delta-10 THC, Delta-8 THC, THCV,

CHROMATOGRAPHIC RESULTS

This project was partially funded by the 2021 Paul Coverdell Formula Grant (Award: 15PBJA-21-GG-02897-COVE). For Forensic Use Only

Quantifying Cannabinoids in Complex Matrices Reta Newman, MA, ABC-DA^{*} and Michael Gilbert, BS, ABC-DA^{*}

*Pinellas County Forensic Laboratory, Largo, FL

WHAT IS QuantCaps[™]

	EXAMPLE QunatCaps [™] VALIDATION KIT						
	CONTENTS	QTY	VOLUME				
	1 x set of Calibration vials in solution	3	60uL/vial				
	3 x sets of QC vials in solution	3	60uL/vial				
	1 x Matrix - Blank (Nettle Extract) in solution with IS	3	60uL/vial				
	1 x Matrix - Blank (Nettle Extract) in solution without IS	3	60uL/vial				
	5 x Pos. matrix effect vials (3-analyte mix + IS at 0.3% with nettle)	3	60uL/vial				
	1 x Bottle of Internal Std (0.5% testosterone) extraction solution	3	100uL/vial				
	1 Interference study set (10 single-analyte vials; 0.3% level/analyte; see table)	3	30ug/mL/vial				
	1 Interference solution (10-analyte mix at 0.3% level per analyte)	3	30ug/mL/vial				
	3 Optimization vials (CBD, delta-9 THC, delta-8 THC)	3	100ug/mL each				
	3 Solvent blank vials (MeOH:CH ₂ Cl ₂ (9:1)) for carryover study	3	1mL per vial				
	1 Hemp CRM sample - supplied by Absolute Standards, Inc.	3	Neat Solid				

ANALYTICAL PROCEDURE

Step 1: Analysis of pre-manufactured calibrators and second source QCs

Analyze pre-manufactured calibrators and second source QCs

- Injectable-ready matrixmatched standards
- Injectable-ready second source <u>QCs</u>
- Both standards and QCs extracted per lab protocol

Step 2: Unknown sample extraction

- Weigh 50 mg +/- 1mg of unknown sample
- Add 5mL of extraction solvent premanufactured with internal standard that is matched to the calibrators and QCs
- Equilibrate for 10 minutes with periodic vortexing (at least 2 times for 15 seconds)
- Decant/filter
- Analyze by GC-FID

GC-FID QUANTITATION METHOD

Instrumentation	Agilent 6890N GC with FID
Column	Agilent DB5-MS 30m 0.25 ID 0.25 film thickness
Gas	N ₂ carrier gas split 50:1
Injection	1 uL
Temperature	Inlet 250°C, detector 320°C
Flow	Ramped flow 2.2 mL/min hold 4.3 min 2mL/min per min to 2.5 mL/mim
Temperature Program	Initial temp. 250°C ramp 25°C/min to 300°C hold 3 min

RESULTS

Plant

DISCUSSION & CONCLUSIONS

- Results show that validated testing procedures are accurate (% bias < 20%) and precise (% CV < 20%)
- Analytical reportable ranges meet statutory requirements for hemp products made with plant, oil or wax
- Pre-manufactured kits meet laboratory QA/QC requirements
- Kits are equipped with matrix matched, injectable-ready standards and second source quality controls
- Injectable-ready formats allow staff time to focus on unknown sample extractions
- Operational costs are reduced through time and material savings
- One week is required for each matrix to execute validation studies
- This study shows that the commercially available QuantCap[™] test kits are suitable for meeting testing requirements associated with the 2018 USDA Farm Bill that regulates hemp products
- Method is easily transferable to GC-MS instrumentation
- QuantCaps[™] kit is commercially available by PinPoint Testing

REFERENCES

- 1. Farm bill. (n.d.). USDA. https://www.usda.gov/farmbill
- 2. AAFS Standards Board. Standard Practices for Method Validation in Forensic Toxicology, ANSI/ASB Standard 036; Colorado Springs, CO, 2019.

